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a b s t r a c t

Scale-up of boron-doped diamond (BDD) anode system is significant to the practical application of elec-
trochemical oxidation in bio-refractory wastewater treatment. In this study, the performance of a smaller
BDD anode (24 cm2) system in continuous mode electrochemical oxidation of phenol simulated wastew-
ater was first investigated and well described by the response surface methodology (RSM). Furthermore,
the RSM was extended to examine the scale-up feasibility of BDD anode systems with similar configura-
tions. It was demonstrated that both COD degradation efficiency and specific energy consumption could
be expected at the same level even as the system was enlarged over 100 times, which implied that BDD
oron-doped diamond anode
lectrochemical oxidation
esponse surface methodology
henol

anode system could be successfully scaled up through controlling the same retention time, current den-
sity, initial COD, and conductivity conditions. Based on this study, a larger BDD anode (2904 cm2) system
was constructed and systematic measurements were made on its performance in electrochemical oxida-
tion of phenol simulated wastewater. Very good agreement was found between measured and predicted
results by RSM. At the optimized conditions, the larger BDD anode system could easily reduce the COD of
phenol simulated wastewater from 633 mg L−1 to 145 mg L−1 (<150 mg L−1, National Discharge Standard

ith s −1
of China) during 80 min w

. Introduction

Many industries generate bio-refractory organic wastewaters,
uch as coking plant, oil refinery, dye factory, and paper manufac-
ory. Usually, after biological treatment, the effluent COD values
f these wastewaters were still higher than 150 mg L−1 (National
ischarge Standard of China) [1–5]. Thus, efforts on advanced

reatment will be necessary. Electrochemical oxidation is of great
otential in the treatment of bio-refractory organic wastewaters,
ince it has been proven to be very effective to various refractory
rganic pollutants, i.e., phenols [6], dyes [7], surfactants [8], and
erbicides [9], and many real wastewaters, e.g., textile dye effluent
10], landfill leachate [11], coking wastewater [12], and tannery
aste liquor [13].

As one of the important factors for electrochemical technology,
lectrode materials have significant effects on the effectiveness,
fficiency, and mechanisms of electrochemical processes. Lots of

lectrode materials have been investigated in previous studies
14–19], including graphite, platinum, IrO2, RuO2, SnO2, PbO2, and
oron-doped diamond (BDD) electrodes. The results demonstrated
hat BDD electrode has many advantages, such as strong oxidation
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pecific energy consumption only 31 kWh kgCOD .
© 2010 Elsevier B.V. All rights reserved.

ability, high current efficiency, weak electrode fouling, and long
service life [19–23], and it was of great potential in electrochemi-
cal treatment of bio-refractory organic wastewaters. Therefore, the
scale-up of BDD anode system is the next critical step that would
make electrochemical oxidation to be a practical technology for
wastewater treatment.

However, few researches on the scale-up of BDD anode sys-
tem have been reported. Hitherto, investigations were usually
performed at BDD anodes with a working area of 1–100 cm2

[6,7,23–27]. Only Tröster et al. [28] constructed a flow cell using
a stack of BDD electrodes with total active area of 1 m2, but
detailed comparisons between laboratory and pilot plant results
were not reported. Urtiaga and co-workers [29–31] investigated
the electrochemical oxidation of landfill leachate at pilot scale
(total BDD anode area = 1.05 m2), but the system consisted of 150
cells (anode–cathode pair), i.e. each BDD anode area was only
70 cm2. Moreover, their results demonstrated that the COD removal
efficiency in pilot plant system was slightly lower than that in lab-
oratory system due to the different hydrodynamics.

In this study, a smaller BDD anode system was first constructed
2
using 24 cm BDD electrode. The performance of this system in

continuous mode electrochemical oxidation of phenol simulated
wastewater were soundly investigated by the response surface
methodology (RSM), because RSM is a powerful tool to describe
and optimize complex systems [32–35]. Then, the obtained results

dx.doi.org/10.1016/j.jhazmat.2010.08.062
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Fig. 1. Comparison between experimental and predicted

ere used to guide the operation of a larger BDD anode system
anode area = 2904 cm2). The BDD anode system was successfully
caled up by 121 times without performance deterioration.

. Materials and methods

.1. BDD anode systems

Two BDD anode systems of similar configurations were con-
tructed. For the smaller system, a Nb/BDD plate with a working
rea of 24 cm2 (3 × 8 cm, bought from CONDIAS GmbH, Germany)
as used as the anode, and a piece of stainless steel with the same

ize was as the cathode. The gap between the electrodes was set
o be 1.55 cm, and thus the working volume of this system was
7.2 mL. As for the larger system, a Nb/BDD plate with a working
rea of 2904 cm2 (33 × 88 cm) was used as the anode and the stain-
ess steel of the same size was as the cathode. The gap between the
lectrodes was also set to be 1.55 cm, so the working volume of this
ystem was 4501 mL.
Continuous mode electrochemical oxidation of phenol simu-
ated wastewater was performed in these two BDD anode systems
nder galvanostatic condition at room temperature. Phenol simu-

ated wastewater was chosen as the studied object, because phenol
s a common and typical organic pollutant in many industrial

ig. 2. Comparison between experimental (�) and predicted (©) values of DCOD (A) and
eviation between experimental and predicted values.
s of DCOD (A) and Es (B) in the smaller BDD anode system.

effluents [1,2,5]. During electrochemical oxidation process, phe-
nol simulated wastewater was continuously pumped through the
reactor at a certain flow rate (determined by retention time) which
ranged in 0.42–4.65 mL min−1 for the smaller BDD anode system
and 51.15–562.62 mL min−1 for the larger BDD anode system.

2.2. Response surface methodology

The response surface methodology (RSM) was used for the first
time to describe and optimize the electrochemical oxidation pro-
cess of BDD anode system. In RSM, the most popular class of
second-order designs called central composite design (CCD) was
used for the experimental design, since the CCD is well suitable for
fitting a quadratic surface, which usually works well for the process
optimization [32,35].

The retention time (X1), current density (X2), initial COD (X3),
and conductivity (X4) were chosen as independent variables,
because studies have demonstrated that they significantly influ-
enced the electrochemical oxidation processes [7,36–38]. The COD

degradation efficiency and specific energy consumption were as
output variables or responses. Independent variables and their
experimental ranges are given in Table 1. The initial COD was con-
trolled by phenol concentration and the conductivity was kept by
certain Na2SO4 quantity.

Es (B) in the larger BDD anode system. (C) and (D) For DCOD and Es with standard
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Table 1
Experimental range and levels of the independent factors for electrochemical oxidation of phenol simulated wastewater.

Independent factors Factor Range and levels

Xi −2 −1 0 1 2

Retention time (min) X1 8 28 48 68 88
−2

a

x

w
s

r
1

Y

w
r
q
a

2

t
o
c

T
A

Current density (mA cm ) X2 6
Initial COD (mg L−1) X3 100
Conductivity (mS cm−1) X4 3

For statistical calculations, the variables Xi were coded as xi
ccording to the following relationship:

i = Xi − X0

ıX
(1)

here X0 is value of the Xi at the center point, and ıX presents the
tep change.

Experimental data were analyzed using the response surface
egression procedures by means of the software package Minitab
5 and fitted to the following second-order polynomial model:

= b0 + b1x1 + b2x2 + b3x3 + b4x4 + b11x2
1 + b22x2

2 + b33x2
3

+b44x2
4 + b12x1x2 + b13x1x3 + b14x1x4 + b23x2x3

+b24x2x4 + b34x3x4 (2)

here Y is response variable, b0 is constant, b1, b2, b3, and b4 are
egression coefficients for linear effects, b11, b22, b33, and b44 are
uadratic coefficients, and b12, b13, b14, b23, b24, and b34 are inter-
ction coefficients.

.3. Analytical methods
The influent and effluent COD of phenol simulated wastewa-
er was measured by a titrimetric method using dichromate as the
xidant in acidic solution at 150 ◦C for 2 h (Hachi, USA). The spe-
ific energy consumption (Es) was calculated using the following

able 2
24 full factorial CCD with five replicates of the centre point for electrochemical oxidatio

Runs x1 x2 x3

1 −1 −1 −1
2 1 −1 −1
3 −1 1 −1
4 1 1 −1
5 −1 −1 1
6 1 −1 1
7 −1 1 1
8 1 1 1
9 −1 −1 −1

10 1 −1 −1
11 −1 1 −1
12 1 1 −1
13 −1 −1 1
14 1 −1 1
15 −1 1 1
16 1 1 1
17 −2 0 0
18 2 0 0
19 0 −2 0
20 0 2 0
21 0 0 −2
22 0 0 2
23 0 0 0
24 0 0 0
25 0 0 0
26 0 0 0
27 0 0 0
28 0 0 0
29 0 0 0
13 20 27 34
300 500 700 900

6 9 12 15

equation:

Es = 1000U I t

(CODin − CODout)V
(3)

where Es is the specific energy consumption (in kWh kgCOD−1), U is
the voltage (in V), I is the current (in A), t is the retention time (in h),
CODin and CODout are the influent and effluent COD of wastewater
(in mg L−1), and V is the volume of reactor (in L).

3. Results and discussion

3.1. Performance of the smaller BDD anode system

Electrochemical oxidation of phenol simulated wastewater was
performed in the smaller BDD (24 cm2) anode system according
to the full factorial central composite design (CCD) (Table 2). The
COD degradation efficiency (DCOD) and specific energy consump-
tion (Es) for every run were also shown in Table 2. Under different
conditions, the DCOD was in the range of 23.71–89.68% and the Es
was in 54.43–863.39 kWh kgCOD−1.
RSM was used to analyze the obtained data. The experimental

data were fitted to the second-order polynomial model (Eq. (2))
using the response surface regression procedures. The following
empirical RSM models were obtained for DCOD (Eq. (4)) and Es (Eq.

n of phenol simulated wastewater in the smaller BDD anode system.

x4 DCOD (%) Es (kWh kgCOD−1)

−1 48.53 183.93
−1 74.55 299.94
−1 59.77 407.66
−1 80.11 692.35
−1 47.98 84.89
−1 75.69 135.11
−1 63.12 176.64
−1 82.89 327.80

1 49.53 155.36
1 78.40 236.01
1 65.90 305.96
1 85.37 587.42
1 54.10 61.53
1 80.49 101.75
1 67.02 132.15
1 88.17 241.93
0 23.71 108.82
0 89.68 318.95
0 59.88 54.43
0 81.04 394.63
0 80.52 863.39
0 73.32 115.82

−2 67.25 381.62
2 76.41 175.63
0 74.17 206.23
0 74.58 205.69
0 71.97 209.21
0 75.96 197.91
0 75.07 201.13
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Fig. 3. Contour plots of DCOD in the larger BDD anode system vs. two shown factors:
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5)):

(DCOD) = 74.350 + 13.402x1 + 5.225x2 + 0.121x3 + 2.277x4

−4.435x2
1 − 0.993x2

2 + 0.622x2
3 − 0.651x2

4 − 1.766x1x2

+0.020x1x3 + 0.127x1x4 + 0.175x2x3 + 0.300x2x4

+0.241x3x4 (R2 = 0.9703) (4)

(Es) = 204.034 + 63.935x1 + 95.575x2 − 129.249x3 − 37.425x4

−4.789x2
1 − 2.128x2

2 + 64.141x2
3 + 11.396x2

4 + 33.749x1x2

−25.714x1x3 − 5.623x1x4 − 38.932x2x3 − 11.736x2x4

+7.003x3x4 (R2 = 0.9410) (5)

The obtained models had high values of coefficient of
etermination (R2). Additionally, good agreements between the
xperimental and predicted values of DCOD and Es were observed
Fig. 1). Experimental values were presented in X axes, and Y axes
as for corresponding predicted values. The data were fitted to

quation Y = aX + b. For both DCOD and Es, the values of “a” and the
oefficients of determination (R2) were very close to 1, which indi-
ated the satisfactory predictions. These results demonstrated that
SM was very suitable to describe the electrochemical oxidation
rocess of BDD anode system.

.2. Performance of the larger BDD anode system

The obtained DCOD and Es models by RSM demonstrated that
oth COD degradation efficiency and specific energy consumption
ould be at the same level once the retention time, current den-

ity, initial COD, and conductivity were same, whatever the BDD
node system was enlarged by any times. Therefore, a larger BDD
node (2904 cm2) system was constructed with similar configura-
ion, i.e., the BDD anode system was scaled up by 121 times. The
erformance of this system in electrochemical oxidation of phenol
imulated wastewater was investigated under the same conditions
s those for the smaller BDD anode system (listed in Table 2).

Fig. 2 shows the experimental and predicted values of DCOD and
s in the larger BDD anode system. Good agreement with relative
mall standard deviation (0.2–12%) was observed between experi-
ental and predicted values by RSM, which implied that BDD anode

ystem could be successfully scaled up over 100 times through con-
rolling the same retention time, current density, initial COD, and
onductivity conditions.

.3. Optimization of the larger BDD anode system

The DCOD and Es in the larger BDD anode system were signifi-
antly different under special conditions. The influences of primary
actors (retention time t, current density j, initial COD C0, and con-
uctivity S) were clearly depicted by the contour plots of DCOD
Fig. 3) and Es (Fig. 4).

As for DCOD, the interaction between retention time and current
ensity was obvious (Fig. 3A). To achieve the same degradation
arget, longer retention time required lower current density, and
ice versa. Furthermore, it can be observed that the influence of
etention time was more apparent than those of current density
Fig. 3A), initial COD (Fig. 3B), and conductivity (Fig. 3C). The role

f current density was more important than those of initial COD
Fig. 3D) and conductivity (Fig. 3E). The initial COD was more sig-
ificant than conductivity (Fig. 3F). The role order of factors was
> j > C0 > S. These figures also showed that higher degradation effi-
iency was obtained at longer retention time, larger current density,
(A) retention time and current density, (B) retention time and initial COD, (C) reten-
tion time and conductivity, (D) current density and initial COD, (E) current density
and conductivity, and (F) current density and conductivity.

and lower initial COD. The conductivity mostly did not affect the
degradation efficiency.

Es was affected by retention time, current density, initial COD,
and conductivity (Fig. 4). It can be observed that the effect of ini-
tial COD was more obvious than those of retention time (Fig. 4B),
current density (Fig. 4D), and conductivity (Fig. 4F). The current
density was more important than retention time (Fig. 4A) and
conductivity (Fig. 4E). The role of retention time was more sig-
nificant than that of conductivity (Fig. 4C). The important order
of factors was distinguished as C0 > j > t > S. Lower specific energy
consumption was shown at shorter retention time, smaller cur-
rent density, higher initial COD, and larger conductivity, which
was almost opposite to those for higher degradation efficiency.
Therefore, the integrated influences on degradation efficiency and
energy consumption should be considered to determine oper-
ating conditions for an electrochemical oxidation process, and
RSM was very effective to describe and optimize this complex
system.

Optimal conditions to simultaneously achieve high DCOD and
low Es were obtained from RSM models and calculated by
Minitab 15 software. At the optimized conditions (t = 80 min,

j = 8.5 mA cm−2, C0 = 633 mg L−1, S = 3 mS cm−1), the DCOD and Es

in the larger BDD anode system were 77% and 63 kWh kgCOD−1,
respectively. That is, the COD of phenol simulated wastewater was
reduced from 633 mg L−1 to 145 mg L−1 (<150 mg L−1, National Dis-
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Fig. 4. Contour plots of Es in the larger BDD anode system vs. two shown factors: (A)
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harge Standard of China) during 80 min, while the specific energy
onsumption was only 63 kWh kgCOD−1 (i.e., 31 kWh kgCOD−1),
hich demonstrated that the larger BDD anode system was

f great potential in electrochemical oxidation of bio-refractory
astewater.

. Conclusions

The scale-up of BDD anode system is the next significant step
o allow electrochemical oxidation as a practical technology for
astewater treatment. Using the response surface methodology

RSM), the effects of scale-up were investigated on BDD anode
ystems with similar configurations. As a result, the smaller BDD
node (24 cm2) system was successfully scaled up by 121 times
hrough controlling the primary influence factors, such as reten-
ion time, current density, initial COD, and conductivity. Expected
OD degradation efficiency and energy consumption were obtained

n the scaled up BDD anode (2904 cm2) system. At the optimized
onditions, the COD of phenol simulated wastewater in the scaled

p BDD anode system was effectively reduced from 633 mg L−1 to
45 mg L−1 (<150 mg L−1, National Discharge Standard of China)
uring 80 min, while the specific energy consumption was only
1 kWh kgCOD−1.
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